
An Observational Investigation of Reverse Engineers’ Processes

Daniel Votipka, Seth M. Rabin, Kristopher Micinski*,
Jeffrey S. Foster†, and Michelle M. Mazurek

University of Maryland; *Syracuse University; †Tufts University
{dvotipka,srabin,mmazurek}@cs.umd.edu; kkmicins@syr.edu; jfoster@cs.tufts.edu

Abstract
Reverse engineering is a complex process essential to
software-security tasks such as vulnerability discovery and
malware analysis. Significant research and engineering effort
has gone into developing tools to support reverse engineers.
However, little work has been done to understand the way
reverse engineers think when analyzing programs, leaving
tool developers to make interface design decisions based only
on intuition.

This paper takes a first step toward a better understanding
of reverse engineers’ processes, with the goal of producing
insights for improving interaction design for reverse engi-
neering tools. We present the results of a semi-structured,
observational interview study of reverse engineers (N=16).
Each observation investigated the questions reverse engineers
ask as they probe a program, how they answer these questions,
and the decisions they make throughout the reverse engineer-
ing process. From the interview responses, we distill a model
of the reverse engineering process, divided into three phases:
overview, sub-component scanning, and focused experimen-
tation. Each analysis phase’s results feed the next as reverse
engineers’ mental representations become more concrete. We
find that reverse engineers typically use static methods in the
first two phases, but dynamic methods in the final phase, with
experience playing large, but varying, roles in each phase.
Based on these results, we provide five interaction design
guidelines for reverse engineering tools.

1 Introduction

Software reverse engineering is a key task performed by se-
curity professionals during vulnerability discovery, malware
analysis, and other tasks [1, 2], [3, pg. 5-7]. (For brevity, we
will refer to this task as RE and its practitioners as REs.) RE
can be complex and time consuming, often requiring expert
knowledge and extensive experience to be successful [4,5]. In
one study, participants analyzing small decompiled code snip-
pets with less than 150 lines required 39 minutes on average
to answer common malware-analysis questions [5].

Researchers, companies, and practitioners have developed
an extensive array of tools to support RE [5–24]. However,
there is limited theoretical understanding of the RE process
itself. While existing tools are quite useful, design decisions
are currently ad-hoc and based on each designer’s personal
experience. With a more rigorous and structured theory of
REs’ processes, habits, and mental models, we believe ex-
isting tools could be refined, and even better tools could be
developed. This follows from recommended design princi-
ples for tools supporting complex, exploratory tasks, in which
the designer should “pursue the goal of having the computer
vanish" [25, pg. 19-22].

In contrast to RE, there is significant theoretical understand-
ing of more traditional program comprehension—how devel-
opers read and understand program functionality—including
tasks such as program maintenance and debugging [26–36].
However, RE differs from these tasks, as REs typically do not
have access to the original source, the developers who wrote
the program, or internal documentation [3, pg. 141-196], [37].
Further, REs often must overcome countermeasures, such as
symbol stripping, packing, obfuscation, and anti-debugging
techniques [3, pg. 327-356], [38], [39, pg. 441-481], [40, pg.
660-661]. As a result, it is unclear which aspects of traditional
program comprehension processes will translate to RE.

In this paper, we develop a theoretical model of the RE
process, with an eye toward building more intuitive RE tools.
In particular, we set out to answer the following research
questions:

RQ1. What high-level process do REs follow when examin-
ing a new program?

RQ2. What technical approaches (i.e., manual and automated
analyses) do REs use?

RQ3. How does the RE process align with traditional pro-
gram comprehension? How does it differ?

Specifically, when considering REs’ processes, we sought
to determine the types of questions they had to answer and hy-
potheses they generated; the specific steps taken to learn more

1

about the program; and the way they make decisions through-
out the process (e.g., which code segments to investigate or
which analyses to use).

As there is limited prior work outlining REs’ processes
and no theoretical basis on which to build quantitative assess-
ments, we chose an exploratory qualitative approach, building
on prior work in expert decision-making [41–43] and program
comprehension [26–36]. While a qualitative study cannot in-
dicate prevalence or effectiveness of any particular process,
it does allow us to enumerate the range of RE behaviors
and investigate in depth their characteristics and interactions.
Through this study, we can create a theoretical model of the
RE process as a reference for future tool design.

To this end, we conducted a 16-participant, semi-structured
observational study. In each participant session, we asked par-
ticipants to recreate a recent RE experience while we observed
their actions and probed their thought process. Throughout,
we tracked the decisions made, mental simulation methods
used, questions asked, hypotheses formulated, and beacons
(recognizable patterns) identified.

We found that in general, the RE process can be modeled
in three phases: overview, sub-component scanning, and fo-
cused experimentation. REs begin by establishing a broad
view of the program’s functionality (overview). They use
their overview’s results to prioritize sub-components—e.g.,
functions—for further analysis, only performing detailed re-
view of specific sub-components deemed most likely to yield
useful results (sub-component scanning). As REs review these
sub-components, they identify hypotheses and questions that
are tested and answered, respectively, through execution or
in-depth, typically manual static analysis (focused experimen-
tation). The last two phases form a loop. REs develop hy-
potheses and questions, address them, and use the results to
inform their understanding of the program. This produces new
questions and hypotheses, and the RE continues to iterate until
the overall goal is achieved.

Further, we identified several trends in REs’ processes span-
ning multiple phases. We found that REs use more static
analysis in the first two phases and switch to dynamic sim-
ulation methods during focused experimentation. We also
observed that experience plays an important role through-
out REs’ decision-making processes, helping REs prioritize
where to search (overview and sub-component scanning), rec-
ognize implemented functionality and potential vulnerabilities
(sub-component scanning), and select which mental simula-
tion method to employ (all phases). Finally, we found REs
choose to use tools to support their analysis when a tool’s
input and output can be closely associated with the code and
when the tools improve code readability.

Based on these results, we suggest five guidelines for de-
signing RE tools.

2 Background and Related Work

While little work has investigated expert RE, there has been
significant effort studying similar problems of naturalistic
decision-making (NDM) and program comprehension. Be-
cause of their similarity, we draw on theory and methods that
have been found useful in these areas [26–32, 44, 45] as well
as in initial studies of RE [46].

2.1 Naturalistic Decision-Making
Significant prior work has investigated how experts make
decisions in real-world (naturalistic) situations and the fac-
tors that influence them. Klein et al. proposed the theory
of Recognition-Primed Decision-Making (RPDM) [45, pg.
15-33]. The RPDM model suggests experts recognize compo-
nents of the current situation—in our case, the program under
investigation—and quickly make judgments about the cur-
rent situation based on experiences from prior, similar situa-
tions. Therefore, experts can quickly leverage prior experience
to solve new but similar problems. Klein et al. have shown
this decision-making model is used by firefighters [41, 42],
military officers [43, 47], medical professionals [48, pg. 58-
68], and software developers [49]. Votipka et al. found that
vulnerability-discovery experts rely heavily on prior experi-
ence [1], suggesting that RPDM may be the decision-making
model they use.

NDM research focuses on these decision-making processes
and uses interview techniques designed to highlight critical
decisions, namely the Critical Decision Method, which has
participants walk through specific notable experiences while
the interviewer records and asks probing follow-up question
about items of interest to the research (see Section 3.1) [44].
Using this approach prior work has driven improvements in
automation design. Specifically, these methods have identi-
fied tasks within expert processes for automation [44, 50],
and inferred mental models used to support effective inter-
action design [51] in several domains, including automobile
safety controls [52, 53], military decision support [44, 54–56],
and manufacturing [57, 58]. Building on its demonstrated
success, we apply the Critical Decision Method to guide our
investigation.

2.2 Program Comprehension
Program comprehension research investigates how develop-
ers maintain, modify, and debug unfamiliar code—similar
problems to RE. Researchers have found that developers ap-
proach unfamiliar programs from a non-linear, fact-finding
perspective [26–32]. They make hypotheses about program
functionality and focus on proving or disproving their hy-
potheses.

Programmers’ hypotheses are based on beacons recognized
when scanning through the program. Beacons are common

2

schemas or patterns, which inform how developers expect
variables and program components to behave [28, 33–35]. To
evaluate their hypotheses, developers either mentally simu-
late the program by reading it line by line, execute it using
targeted test cases, or search for other beacons that contradict
their hypotheses [2, 28, 29, 33, 36]. Von Mayrhauser and Lang
showed developers switch among these methods regularly,
depending on the program context or hypothesis [59]. Further,
when reading code, developers focus on data- and control-flow
dependencies to and from their beacons of interest [34, 60].

We anticipated that REs might exhibit similar behaviors, so
we build on this prior work by focusing on hypotheses, bea-
cons, and simulation methods during interviews (Section 3.1).
However, we also hypothesized some process divergence, as
RE and “standard” program comprehension differ in several
key respects. Reverse engineers generally operate on obfus-
cated code and raw binaries, which are harder to read than
source code. Further, REs often focus on identifying and
exploiting flaws in the program, instead of adding new func-
tionality or fixing known errors.

2.3 Improving Usability for RE Tools

Several researchers have taken steps to improve RE tool us-
ability. Do et al. created a Just-in-time static analysis frame-
work called CHEETAH, based on the result of user stud-
ies investigating how developers interact with static analysis
tools [61, 62]. CHEETAH lets developers run static analyses
incrementally as they write new code, allowing developers
to put the analyses results in context and reduce the over-
whelming “wall of alerts” feeling. While we follow a similar
qualitative approach, we focus on a different population (i.e.,
REs instead of developers) and task (RE instead of security
alert response).

Shoshitaishvili et al. propose a tool-centered human-
assisted vulnerability discovery paradigm [6]. They suggest
a new interaction pattern where users provide on-demand
feedback to a automated agent by performing well-defined
sub-tasks to support the agent’s analysis. This model leverages
human insights to overcome the automation’s deficiencies,
outperforming the best automated systems while allowing
the analysis to scale significantly beyond limited human re-
sources. However, the demonstrated interaction model specifi-
cally targets non-expert users who do not understand program
internals (e.g., code, control flow diagrams, etc.), treating the
program as a black box.

Focusing on expert users, Kruger et al. propose a specifica-
tion language to allow cryptography experts to state secure
usage requirements for cryptographic APIs [63]. Unfortu-
nately, this approach still requires the expert to learn a new,
potentially complicated language—hundreds of lines of code
for each API.

Finally, Yakdan et al. designed a decompiler, DREAM++,
intended to improve usability compared to existing tools [5].

DREAM++’s experimental evaluation showed that a simple
set of code transformations significantly increased both stu-
dents’ and professionals’ ability to RE malware, demonstrat-
ing the benefit of even minor usability improvements.We hope
that our more complete investigation of REs’ processes may
spur the development of further high-impact improvements.

2.4 The Vulnerability Discovery Process
Ceccato et al. reviewed detailed reports by three penetra-
tion testing teams searching for vulnerabilities in a suite of
security-specific programs [2]. The participating teams were
asked to record their process for searching the programs, find-
ing vulnerabilities, and exploiting them. Our study delves
deeper into the specific problem of RE a program to under-
stand its functionality. Further, through our interviews, we
are able to probe the RE’s process to elicit more detailed
responses.

Most similarly to this work, Bryant investigated RE using
a mixed methods approach, including three semi-structured
interviews with REs and an observational study where four
participants completed a predesigned RE task [46]. Based
on his observations, Bryant developed a sense-making model
for reverse engineering where REs generate hypotheses from
prior experience and cyclically attempt to (in)validate these
hypotheses, generating new hypotheses in the process. Our re-
sults align with these findings; we expand on them, producing
a more detailed model describing the specific approaches used
and how RE behaviors change throughout the process. Our
more detailed model is achieved through our larger sample
size and observation of RE processes on different, real-world
programs, demonstrating RE behaviors to ensure saturation
of themes [64, pg. 113-115].

In our prior work, we performed 25 interviews of white-hat
hackers and testers to determine their vulnerability discovery
processes [1]. While this research identified RE as an impor-
tant part of the vulnerability discovery process, its broader
focus (e.g., process, skill development, and community in-
teraction) limited its ability to provide details regarding how
RE is carried out, leading us to our current, more focused
investigation.

3 Method

We are interested in developing a theoretical model of the
RE process with respect to both overall strategy and specific
techniques used. In particular, we focus on the three research
questions given in Section 1.

To answer these questions, we employ a semi-structured,
observation-based interview protocol, designed to yield de-
tailed insights into RE experts’ processes. The full protocol
is given in Appendix A. Interviews lasted 70 minutes on av-
erage. Audio and video were recorded during each interview.
All interviews were led by the first author, who has six years

3

of professional RE experience, allowing him to understand
each RE’s terminology and process, ask appropriate probing
questions, and identify categories of similar actions for cod-
ing. Participants were provided a $40 gift card in appreciation
of their time. Our study was reviewed and approved by the
University of Maryland’s Institutional Review Board. In this
section, we describe our interview protocol and data analysis
process, and we discuss limitations of our method.

3.1 Interview Protocol
We performed semi-structured, observational video-
teleconference interviews. We implemented a modified
version of the Critical Decision Method, which is intended
to reveal expert knowledge by inquiring about specific
cases of interest [44]. We asked participants to choose an
interesting program they recently reverse engineered, and
had them recall and demonstrate the process they used.
Each observation was divided into the two parts: program
background and RE process. Throughout, the interviewer
noted and asked further questions about multiple items of
interest.

Program background. We began by asking participants to
describe the program they chose to reverse engineer. This
included questions about the program’s functionality and size,
what tools (if any) they used, and whether they reverse engi-
neered the program with others.

Reverse engineering process. Next, we asked participants
about their program-specific RE goals, and then asked them to
recreate their process while sharing their screen (RQ1)1. We
chose to have participants demonstrate their process, asking
them to open all tools they used and perform all original steps,
so we could observe automatic and subconscious behaviors—
common in expert tasks [65]—that might be missed if simply
asked to recall their process. As the participant recreated
their process, we asked several directed questions intended to
probe their understanding while allowing them to delve into
areas they felt were important. We encouraged participants
to share their entire process, even if a particular speculative
step did not end up supporting their final goal. For example,
they may have decided to reverse a function that turned out to
be a common library function already documented elsewhere,
resulting in no new information gain.

Instead of asking participants to demonstrate a recent ex-
perience, we could have asked them to RE a program new to
them. This could be more representative of the real-world ex-
perience of approaching a new program and might highlight
additional subconscious or automatic behaviors. However, it
would likely require a much longer, probably unreasonable
period of observation. When asked how much time partici-
pants spent reverse engineering the programs demonstrated,

1The only participant who did not share their screen did so because of
technical difficulties that could not be resolved in a timely manner.

answers ranged from several hours to weeks. Alternatively, we
could have asked participants to RE a toy program. However,
this approach restricts the results, both in depth of process
and in terms of the program type(s) selected. Demonstration
provides a reasonable compromise, and is a standard practice
in NDM studies [44]. In practice, we believe the effect of
demonstration was small, especially because the interviewer
asked probing questions to reveal subconscious actions.

Items of interest. The second characteristic of the Critical
Decision Method is that the interviewer asks follow-on ques-
tions about items of interest to the research. We selected our
items of interest from those identified as important in prior
NDM (decision) and program comprehension (questions/hy-
potheses, beacons, simulation methods) literature—discussed
in Sections 2.1 and 2.2, respectively. These items were chosen
to identify specific approaches used (RQ2) and differences
between RE and other program comprehension tasks (RQ3).
Below, we provide a short description of each and a summary
of follow-on questions asked:
• Decisions. These are moments where the RE decides be-

tween one or more actions. This can include deciding whether
to delve deeper into a specific function or which simulation
method to apply to validate a new hypothesis. For decision
points, we asked participants to explain how they made the
decision. For example, when deciding to analyze a function,
the RE might consider what data flows into the function as
arguments or what calls it.
• Questions/Hypotheses. These are questions that must

be answered or conjectures about what the program does.
Reverse engineers might form a hypothesis about the main
purpose of a function, or whether a certain control flow is
possible. Prior work has shown that hypotheses are central
part to program comprehension [2, 27–29], so we expected
hypothesis generation and testing to be central to RE. For
hypotheses, we asked participants to explain why they think
the hypothesis might be true and how they tested it. As an
example, if a RE observes a call to strcpy, they might hy-
pothesize that a buffer overflow is possible. To validate their
hypothesis, they would check whether unbounded user input
can reach this call.
• Simulation methods. Any process where a participant

reads or runs the code to determine its function. We asked REs
about any manual or automated simulation methods used: for
example, using a debugger to determine the program’s mem-
ory state at a specific point. We wanted to know whether they
employed any tools and if they were custom, open source,
or purchased. Further, we asked them to evaluate any tools
used, and to discuss their effectiveness for this particular task.
Additionally, we asked participants why they used particu-
lar simulation methods, whether they typically did so, the
method’s inputs and outputs, and how they know when to
switch methods.
• Beacons. These include patterns or tells that a RE recog-

4

nizes, allowing them to quickly generate hypotheses about
the program’s functionality without reading line-by-line. For
example, if a RE sees an API call to get a secure random
number with several bit-shift operations, they may assume
the associated function performs a cryptographic process. For
beacons, we had REs explain why the beacon stood out and
how they recognized it as that sort of beacon rather than some
other pattern. The goal in inquiring into this phenomenon is to
understand how REs perform pattern matching, and identify
potentially common beacons of importance.

Additionally, we noted whenever participants referenced
documentation or information sources external to the code—
e.g., StackOverflow, RE blogs, API documentation—to an-
swer a program functionality question. We asked whether they
use that resource often, and why they selected that resource.

To make the interviews more fluid and less repetitive, we in-
tentionally skipped questions that had already been answered
in response to prior questions. To ensure consistency, all the
interviews were conducted by the first author.

We conducted two pilot interviews prior to the main study.
After the first pilot, we made adjustments to ensure appropri-
ate terminology was used and improve question flow. How-
ever, no changes were required after the second interview, so
we included the second pilot interview in our main study data.

3.2 Data Analysis
We applied iterative open coding to identify interview
themes [66, pg. 101-122]. After completing each interview,
the audio was sent to an external transcription service. The
interviewer and another researcher first collaboratively coded
three interviews—reviewing both the text and video—to cre-
ate an initial codebook. Then, the two coders independently
coded 13 interviews, comparing codes after every three inter-
views to determine inter-coder reliability. To measure inter-
coder reliability, we used Krippendorff’s Alpha (α), as it ac-
counts for chance agreements [67].2 After each round, the
coders resolved any differences, updated the codebook as nec-
essary, and re-coded previously coded interviews. The coders
repeated this process four times until they achieved an α of
0.8, which is above the recommended level for exploratory
studies [67, 69]. The final codebook is given in Appendix ??.

Next, we sought to develop our theoretical model by extract-
ing themes from the coded data. First, we grouped identified
codes into related categories. Specifically, we discovered three
categories associated with the phases of analyses performed
by REs (i.e., Overview, Sub-component Scanning, and Fo-
cused Experimentation). Then, we performed an axial coding
to determine relationships between and within each phase
and trends across the three phases [66, pg. 123-142]. From
these phases and their connections, we derive a theory of REs’
high-level processes and specific technical approaches. We

2The ReCal2 software package was used to calculate Krippendorff’s
Alpha [68]

also present a set of interaction-design guidelines for building
analysis tools to best fit REs.

3.3 Limitations
There are a number of limitations innate to our methodology.
First, participants likely do not recall all task details they are
asked to relay. This is especially common for expert tasks [65].
We attempt to address this by using the CDM protocol, which
has been used successfully in prior decision-making research
on expert tasks [44]. Furthermore, we asked participants to
recreate the RE task while the interviewer observed. This
allowed the interviewer to probe subconscious actions that
would likely have been skipped without observation.

Participants also may have skipped portions of their process
to protect trade secrets; however, in practice we believe this
did not impact our results. Multiple participants stated they
could not demonstrate certain confidential steps, but the secret
component was in the process’s operationalization (e.g., the
keyword list used or specific analysis heuristics). In all cases,
participants still described their general process, which we
were able to include in our analysis.

Finally, we focus on experienced REs to understand and
model expert processes. Future work should consider newer
REs to understand their struggles and support their develop-
ment.

4 Recruitment and Participants

We recruited interview participants from online forums, vul-
nerability discovery organizations, and relevant conferences.

Online forums. We posted recruitment notices on a number
of RE forums, including forums for popular RE tools such as
IDAPro and BinaryNinja. We also posted ads on online com-
munities like Reddit. Dietrich et al. showed online chatrooms
and forums are useful for recruiting security professionals,
since participants are reached in a more natural setting where
they are more likely to be receptive [70].

Related organizations. We contacted the leadership of
ranked CTF teams3 and bug bounty-as-a-service companies
asking them to share study details with their members. Our
goal in partnering with these organizations was to gain cred-
ibility with members and avoid our messages dismissed as
spam. Prior work found relative success with this strategy [1].
To lend further credibility, all emails were sent from an ad-
dress associated with our institution, and detailed study infor-
mation was hosted on a web domain owned by our institution.

Relevant conferences. Finally, we recruited at several confer-
ences commonly attended by REs. We explained study details
and participant requirements in person and distributed busi-
ness cards with study information. Recruiting face-to-face

3Found via https://ctftime.org/

5

https://ctftime.org/

allowed us to clearly explain the goal of the research and its
potential benefits to the RE community.

Participant screening. We asked respondents to our recruit-
ment efforts to complete a short screening questionnaire. Our
questionnaire (see Appendix ?? for full questionnaire) asked
participants to self-report their level of RE expertise on a
five-point Likert-scale from novice to expert; indicate their
years of RE experience; and answer demographic questions.
As our goal is to produce interaction guidelines to fit REs’
processes, building on less experienced REs’ approaches may
not be beneficial. Therefore, we only selected participants
who rated themselves at least a three on the Likert scale and
had at least three years of RE experience.We contacted volun-
teers in groups of ten in random order, waiting one week for
their response before moving to the next group. This process
continued until we reached sufficient interview participation.

Participants. We conducted interviews between October
2018 and January 2019. We received 68 screening survey
responses; 42 met our expertise criteria. Of these volunteers,
16 responded to randomly ordered scheduling requests and
were interviewed. We stopped further recruitment after 16 in-
terviews, when we reached saturation, meaning we no longer
observed new themes emerging. This is the standard stop-
ping criteria for a rigorous qualitative process [64, pg. 113-
115]. Because our participant count is within the range recom-
mended by best practice literature (12-20 participants), our
results provide useful insights for later quantitative inquiry
and generalizable recommendations [71].

Table 1 shows the type of program each participant reverse
engineered during the interview and their demographics, in-
cluding their self-reported skill level, years of experience, and
the method used to recruit them. Each participants’ ID indi-
cates their assigned ID number and the primary type of RE
tasks they perform. For example, P01M indicates the first
interviewee is a malware analyst. Note that three interviewees
used a challenge binary4 during the interview. These partici-
pants could not show us any examples from their normal work
due to the proprietary or confidential nature of their work. In-
stead, we asked them to discuss where their normal process
on a larger program differed from process they showed with
the challenge binary.

While we know of no good RE demographics surveys, our
participant demographics are similar to bug-bounty hunters,
who commonly perform RE tasks. Our population is mostly
male (94%), young (63% < 30) and well educated (75% with
a bachelor’s degree). HackerOne [72] and Bugcrowd report
similar genders (91% of Bugcrowd hunters), ages (84% < 35
and 77% < 30, respectively), and education levels (68% and
63% with a bachelor’s, respectively) for bug-bounty hunters.

4An exercise program designed to expose REs to interesting concepts in
a simple setting

ID1 Program Edu. Skill2 Exp. Recruitment
P01M Malware B.S. 4 7 Conference
P02V System HS 4 8 Conference
P03V Challenge M.S. 4 6 Conference
P04V Challenge B.S. 5 11 Conference
P05V Application M.S. 5 6 Forum
P06V Challenge HS 4 10 Forum
P07V System M.S. 5 10 Forum
P08V Firmware Assoc. 4 5 Forum
P09V Firmware B.S. 4 14 Forum
P10B Malware M.S. 5 15 Organization
P11M Malware Ph.D. 3 10 Forum
P12V System B.S. 3 8 Forum
P13V Application B.S. 5 21 Forum
P14M Malware M.S. 4 5 Forum
P15V Application HS 3 4 Forum
P16M Malware M.S. 3 3 Forum

1 M: Malware analysis, V: Vulnerability discovery, B: Both
2 Scale from 0-5, with 0 indicating no skill and 5 indicating an
expert

Table 1: Participant demographics.

5 Results: An RE Process Model

Across all participants, we observed at a high-level (RQ1)
their RE process could be divided into three distinct phases:
Overview, Sub-component scanning, and Focused experi-
mentation. Beginning with a general goal—e.g., identifying
vulnerabilities or malicious behaviors—REs seek a broad
overview of the program’s functionality (overview). They use
this to establish initial hypotheses and questions which fo-
cus investigation on certain sub-components, in which they
only review subsets of information (sub-component scanning).
Their focused review produces more refined hypotheses and
questions. Finally, they attempt to test these hypotheses and
answer specific questions through execution or in-depth static
analysis (focused experimentation). Their detailed analysis
results are then fed back to the second phase for further inves-
tigation, iteratively refining questions and hypotheses until
the overall goals are achieved. Each phase has its own set of
questions, methods, and beacons that make up the technical
approaches taken by REs (RQ2). In this section, we describe
each phase in detail and highlight differences between RE and
traditional program comprehension tasks (RQ3). In the next
section, we discuss trends observed across these phases, in-
cluding RE process components common to multiple phases,
such as factors driving their decision-making. Figure 1 pro-
vides an overview of each phase of analysis.

Note, in this section and the next, we give the number of
REs who expressed each idea. We include counts to indicate
prevalence, but a participant not expressing an idea may only
mean they failed to state it, not that they disagree with it.
Therefore, we do not perform comparisons between partici-
pants using statistical hypothesis tests. It is uncertain whether
our results generalize past our sample, but they suggest future
work and give novel insights into the human factors of RE.

6

Somewhat to our surprise, we generally observed the same
process and methods used by REs performing both malware
analysis and vulnerability discovery. In a sense, malware ana-
lysts are also seeking an exploit: a unique execution or code
pattern that can be exploited as a signature or used to recover
from an attack (e.g., ransomware). We did observe differences
between groups, but only in their operationalization of the
analysis process. For example, the two groups focused on
different APIs and functionality (e.g., vulnerability finders
looked at memory management functions and malware ana-
lysts focused on network calls). However, because our focus
is on the high-level process and methods used, we discuss
both groups together in the following sections.

5.1 Overview (RQ1)

Reverse engineers may have a short description of the pro-
gram they are investigating (N=2), some familiarity with its
user interface (N=2), or an intuition from prior experience
about the functions the program likely performs (N=7). How-
ever, they generally do not have prior knowledge about the pro-
gram’s organization or implementation (N=16). They might
guess that the program performs cryptographic functions be-
cause it is a secure messaging app, but they do not know the
algorithm or libraries used, or where in the code cryptographic
protocols are implemented. Therefore, they start by seeking
a high-level program view (N=16). This guides which parts
of the program to prioritize for more complex investigation.
P01M said this allows him to “get more to the core of what is
going on with this binary.” Reverse engineers approach this
phase in several ways. The left section of Figure 1 summa-
rizes the overview phase’s simulation methods, beacons, and
outputs. We discuss these items in more detail below.

Identify the strings and APIs used (RQ2). Most REs be-
gin by listing the strings and API calls used by the program
(N=15). These lists allow them to quickly identify interesting
components. P03V gave the example that “if this was a piece
of malware. . . and I knew that it was opening up a file or a reg-
istry entry, I would go to imports and look for library calls that
make sense. Like refile could be a good one. Then I would
find where that is called to find where malicious behavior
starts.” In some cases, REs begin with specific functionality
they expect the program to perform and search for related
strings and APIs (N=7). As an example, P08V performed a
“grep over the entire program looking for httpd because a lot
of times these programs have a watchdog that includes a lot
of additional configuration details.”

Run the program and observe its behavior (RQ2). Many
REs execute the program to see how it behaves under basic
usage (N=7). When running the program, some REs look at
UI elements (e.g., error messages), then search for them in
the code, marking associated program components for further
review (N=3). For example, P13V began by “starting the

software and looking for what is being done.” He was shown
a pop-up that said he had limited features with the free version.
He observed that there was “no place I can put a [access] code,
so it must be making a web services check” to determine
license status. Next, he opened the program in a disassembler
and searched for the pop-up’s text “because you expect there
to be a check around where those strings are.”

Review program metadata (RQ2). Some REs looked at in-
formation beyond the binary or execution trace, such as the file
metadata (N=3), any additional resources loaded (N=3) (e.g.,
images or additional binaries), function size (N=2), history of
recent changes (N=1), where vulnerabilities were found previ-
ously (N=1), and security mitigations used (N=1) (e.g., DEP
or ASLR). This information gives further insights into pro-
gram functionality and can help REs know what not to look
for. P04V said “I’ve been burned in the past. You kind of end
up down a long rabbit hole that you have to step completely
back from if you don’t realize these things. . . For example,
for PIE [Position Independent Executables] there has to be
some sort of program relative read or write or some sort of
address disclosure that allows me to defeat the randomization.
So that’s one thing to look for early on.”

Malware analysts perform overview after unpacking
(RQ2). Many malware binaries are stored in obfuscated form
and only deobfuscated at execution time to complicate RE.
This is commonly referred to as packing. Therefore, REs
must first unpack the binary before strings and imported APIs
become intelligible (N=2). However, once unpacking is per-
formed and the binary is in a readable state, REs perform the
same overview analyses described above (N=2).

Overview is unique to RE (RQ3). In most other program
comprehension tasks, the area of code to focus on is known
at the outset based on the error being debugged [73] or the
functionality being modified or updated [34, 74]. Addition-
ally, developers performing program comprehension tasks
typically have access to additional resources, such as docu-
mentation and the original developers, to provide high-level
understanding [75], making overview analyses unnecessary.

5.2 Sub-component Scanning (RQ1)
Based on findings from their overview, REs next shift their
attention to program sub-components, searching for insights
into the “how” of program functionality. By focusing on sub-
components, sub-component scanning allows REs to quickly
identify or rule out hypotheses and refine their view of the
program. P08V explained that he scanned the code instead of
reading line-by-line, saying, “I’m going through it at a high
level, because it’s really easy to get caught in the weeds when
there could be something much better to look at.” The middle
column of Figure 1 gives an overview of this analysis phase.

Scan for many beacons (RQ2). Most commonly, REs scan

7

Figure 1: Overview of REs’ three analysis phases. For each phase, the analyzed program scope is shown at the top, simulation
methods used are in rectangles, and the analysis results are below the phase. Finally, the phase’s beacons are at the bottom of the
figure. Segments differing the most from the program comprehension literature are colored orange.

Figure 2: Screenshot of botnet code investigated by P11M,
which performs a network connectivity check. This provides
an example of API calls and strings recognized during sub-
component scanning giving program functionality insights.

through functions or code segments prioritized in the overview
(N=15), looking for a variety of beacons indicating possi-
ble behaviors. These include APIs (N=15), strings (N=15),
constants (N=11), and variable names (N=11). For exam-
ple, while investigating a piece of malware, P02V saw
GetProcAddress was called. This piqued his interest because
“it’s a very common function for obfuscation. . . it’s likely set-
ting up an alternate input table” to hide obviously malicious
calls from an RE looking only at the standard import table.

REs infer program behaviors both from individual instances
(N=16) and specific sequences (N=12) of these items. For ex-

ample, while reverse engineering the code in Figure 2, P11M
first scanned the strings on lines 44-46 and recognized them
as well-known websites, generally reachable by any device
connected to the Internet. He then looked at the API calls
and strings on lines 51-56 and said that “it’s just trying to
make a connection to each of those [websites].” By looking at
the constant checked on line 66, he inferred that “if it’s able
to make a connection, it’s going to return a non-zero value
[at line 66].” Putting this all together and comparing to past
experience, P11M explained, “usually you see this activity if
something is trying to see if it has connectivity.”

REs also make inferences from less obvious information.
Many review control-flow structures (N=13) for common
patterns. When studying a router’s firmware, P08V noticed
an assembly code structure corresponding to a switch state-
ment comparing a variable to several constants. From this,
he assumed that it was a “comparison between the device’s
product ID and a number of different product IDs. And then
it’s returning different numbers based off that. So it looks
like it’s trying to ascertain what product it is and then doing
something with it,” because he has “seen similar behavior
before where firmware is written in generically.” Other REs
consider the assembly instructions chosen by the compiler
(N=8) or function prototypes (N=5) to determine the data
types of variables. P02V explained, “It is very important to
understand. . . how compilers map code to the actual binary
output.” As an example, he pointed out instructions at the start
of a function and said, “that’s just part of saving the values. . . I
can safely skip those.” Then he identified a series of regis-
ters and observed “those are the function’s arguments. . . after
checking the codebase of FreeBSD, I know the second argu-
ment is actually a packed structure of arguments passed from
outside the kernel. This is [the data] we control in this func-

8

Figure 3: Program investigated by P02V to determine whether
he could trigger an undefined memory read. The code has
been converted to a pseudo-code representation including
only relevant lines. It shows the control flow graph for two
functions: main and id_alloc. Rectangles represent basic
blocks, and arrows indicate possible control flow paths.

tion context.” Finally, REs consider the code’s relation to the
overall program flow (N=6). For example, P08V identified
a function as performing “tear down” procedures—cleaning
up the state of the program before terminating—because it
“happened after the main function.”

Focused on specific data-flow and control-flow paths
(RQ2). Some REs also scanned specific data- (N=8) and
control-flow (N=7) paths, only considering instructions af-
fecting these paths. These analyses were commonly used to
understand how a function’s input (N=7) or output (N=4) is
used and whether a particular path is realizable (N=4). For
example, while reviewing the program summarized in Fig-
ure 3, P02V asked whether a control-flow path exists through
id_alloc in which x is not written. Memory for x is allocated
before the id_alloc call and read after, so if such a path is
possible, “we can have it read from undefined memory.” To
answer this question, P02V scanned each control flow path
through the function from the bottom of the graph up. If he
saw a write to x, he moved on to the next path. This check
invalidated the first two control-flow paths (counting left-to-
right) in Figure 3. Additionally, in main, the program exits if
the return value of id_alloc is -1. Thus his next step was to
check the data flow to id_alloc’s return value to see whether
it was set to -1. He found the return value was set to -1 in both
remaining control-flow paths, indicating it was not possible
to read from undefined memory.

The diversity of beacons represents a second difference
from program comprehension (RQ3). While program com-
prehension research has identified several similar beacons
(API calls, strings, variable names, sequences of operations,

and constants [28, 33–35]), developers have been shown to
struggle when variable names and other semantic information
are obfuscated [33]. However, REs adapt to the resource-
starved environment and draw on additional beacons (i.e.,
control flow structures, compiler artifacts, and program flow).

5.3 Focused Experimentation (RQ1)
Finally, when REs identify a specific question or hypothesis,
they shift to focused experimentation: setting up small experi-
ments, varying program inputs and environmental conditions,
and considering the program’s behavior in these states to
find a concrete answer or prove whether specific hypotheses
hold. This phase’s results are fed back into sub-component
scanning, to refine high-level hypotheses and the RE’s inter-
pretation of observed beacons. Again, REs rely on a wide
range of methods for this analysis.

Execute the program (RQ2). In most cases, REs validate
their hypotheses by running the code under specific condi-
tions to observe whether the expected behavior occurs (N=13).
They may try to determine what value a certain variable holds
at a particular point (e.g., input to a function of interest) un-
der varying conditions (N=13) or whether user input flows to
an unsafe function (N=9). For example, after reviewing the
data-flow path of the program’s arguments, P03V hypothe-
sized that the program required two input files with a specific
string in the first line to allow execution to reach potentially
vulnerable code. To test this hypothesis, she ran the program
in a debugger with the expected input and traced execution to
see the state of memory at the potentially vulnerable point.

While running the program, REs gather information in a va-
riety of ways. Most execute the code in a debugger (N=12) to
probe memory and have full control over execution. Some use
other tools like packet capturers and file monitors to observe
specific behaviors (N=8). In some cases, REs manipulate the
execution environment by dynamically changing registry val-
ues (N=7) or patching the binary (N=5) to guide the program
down a specific path. As an example, while analyzing mal-
ware that “checks for whether it is being run in a debugger,”
P16M simply changes the program “so that the check will
always just return false [not run in debugger].”

Finally, some REs fuzz program inputs to identify mutation-
specific behavior changes. In most cases, fuzzing is performed
manually (N=6), where the RE hand-selects mutations. Au-
tomation is used in later stages, once a good understanding
of the program is established (N=1). P08V explained, “I wait
until I have a good feel for the inputs and know where to look,
then I patch the program so that I can quickly pump fuzzed
inputs from angr [76] into the parts I care about.”

Compare to another implementation (RQ2). Some REs
chose to re-write code segments in a high-level language
based on the expected behavior (N=8) or searched for public
implementations (e.g., libraries) of algorithms they believed

9

programs used (N=5). They then compared the known im-
plementation’s outputs with the subject program’s outputs to
see if they matched. For example, once P10B recognized the
encryption algorithm he was looking at was likely Blowfish,
he downloaded an open-source Blowfish implementation. He
first compared the open-source code’s structure to the encryp-
tion function he was reviewing. He then ran the reference
implementation and malware binary on a file of all zeros say-
ing, “we can then verify on this sample data whether it’s real
Blowfish or if it’s been modified.”

Read line-by-line only for simple code or when execution
is difficult (RQ2). Finally, REs resorted to reading the code
line-by-line and mentally tracking the program state when
other options became too costly (N=9). In some cases, this
occurred when they were trying to answer a question that
only required reading a few, simple lines of code. For exam-
ple, P05V described a situation where he read line-by-line
because he wanted to fully understand a small number of
specific checks, saying, “After Google Project Zero identified
some vulnerabilities in the system, the developers tried to
lock down that interface by adding these checks. Basically
I wanted to figure out a way to bypass these specific checks.
At this point I ended up reading line-by-line and really trying
to understand the exact nature of the checks.” While no par-
ticipants quantified the number of lines or code complexity
they were willing to read line-by-line, we did not observe
any participants reading more than 50 lines of code. Further,
this determination appeared goal- and participant-dependent,
with wide variation between participants and even within indi-
vidual participants’ own processes, depending on the current
experiment they were carrying out.

REs also chose to read line-by-line instead of running the
program when running the program would require significant
setup (e.g., when using an emulator to investigate uncommon
firmware like home routers). P09V explained, “The reason I
was so IDA [disassembler] heavy this time is because I can’t
run this binary. It’s on a cheap camera and it’s using a shared
memory map. I mean, I could probably run this binary, but
it’s going to take a while to get [emulation] set up.”

During this line-by-line execution, a few REs said they
used symbolic execution to track inputs to a control flow
conditional of interest (N=2). P03V explained, “I write out
the conditions to see what possible states there are. I have
all these variables with all these constraints through multiple
functions, and I want to say for function X, which is maybe
10 deep in the program, what are the possible ranges for each
of these variables?” In both cases, the REs said they generally
performed this process manually, but used a tool, such as Z3,
when the conditions became too complicated. As P03V put
it, “It’s easier if you can just do it in your brain of course, but
sometimes you can’t. . . if there are 10 possibilities or 100
possibilities, I’ll stick it in a SAT solver if I really care about
trying to get past a barrier [conditional].”

Figure 4: Overview of the analysis phases and trends observed
across them. The arrows shown between the phases indicates
information flow. The brackets indicate which phases the
adjacent item is relevant to.

Beacons are still noticed and can provide shortcuts
(RQ2). While REs focus on answering specific questions in
this phase, some also notice beacons missed in prior analyses.
If inferences based on these beacons invalidated prior be-
liefs, REs quickly stop focused experimentation that becomes
moot. For example, while P04V was reverse engineering a
card-game challenge binary, he decided to investigate a reset
function operating on an array he believed might be impor-
tant. There were no obvious beacons on initial inspection
and there were only a few instructions, so he decided to read
line-by-line. However, he quickly recognized two constants
that allowed him to infer functionality. He saw that “it’s incre-
menting values from 0 to 51. So at this point, I’m thinking it’s
a deck of cards. And then it has this variable hold. Hold is a
term for poker, and it sets 0 to 4.” Once he realized what these
variables were, he decided he had sufficient information to
stop analyzing the function, and he moved back to the calling
function to resume sub-component scanning.

Simulation methods mostly overlap with program com-
prehension (RQ3). Most of the methods described above,
including using a debugger and reading code line-by-line,
are found in the program comprehension literature. However,
comparing program execution to another implementation ap-
pears unique to REs. As in sub-component scanning, this
extra method is likely necessitated by the additional complex-
ity inherent in an adversarial environment.

6 Results: Cross-phase Trends

In addition to the phases themselves, we observed several
cross-phase trends in our participants’ RE approaches, which
we discuss in this section. This includes both answers to
our research questions which were not unique to a specific
phase and additional observations regarding tool usage which
inform future tool development. Figure 4 includes some of
these trends as they interact with the phases.

Begin with static methods and finish with dynamic (RQ2).
Most of the simulation methods described in the first two anal-

10

ysis phases focused on static program representations, i.e., the
binary or decompiled code. In contrast, focused experimenta-
tion was mainly performed dynamically, i.e., by running the
program. Reverse engineers typically make this switch, as
P05V stated, “because this thing is so complex, it’s hard to
trace the program flow [statically], but you can certainly tell
when you analyze an [execution] trace. You could say this
was hit or this wasn’t hit.” However, REs sometimes choose
not to switch when they perceive the switch to be difficult.
P15V explained “[switching] was a little daunting to me. I
just wanted to work in this environment I’d already set up.”

Unfortunately, in most cases, switching contexts can be
difficult because REs have to manually transfer information
back and forth between static and dynamic tools (e.g., instruc-
tions or memory states) (N=14). To overcome this challenge,
some REs opened both tools side-by-side to make compar-
isons easier (N=4). For example, P08V opened a debugger
in a window next to a disassembler and proceeded to step
through the main function in the debugger while following
along in the assembly code. As he walked through the pro-
gram, he regularly switched between the two. For example,
he would scan the possible control-flow paths in the disas-
sembler to decide which branch to force execution down and
the necessary conditions would be set through the debugger.
Whenever he came across a specific question that could not
be answered just by scanning, he would switch to the debug-
ger. Because he stepped through the program as he scanned,
he could quickly list register values and relevant memory
addresses to get concrete variable values.

Experience and strategy guide where to look in the first
two phases (RQ1). Initially, REs have to make decisions
about which metadata to look at, e.g., all strings and APIs or
specific subsets, (N=4) and what inputs to provide to exercise
basic behaviors (N=2). Once they run their overview analy-
ses, they must determine which outputs (strings, APIs, or UI
elements) are relevant to their investigation (N=16) and in
what order to process them (N=11). Reverse engineers first
rely on prior experience to guide their actions (N=14). P04V
explained that when he looks for iPhone app vulnerabilities,
he has “a prioritized list of areas [APIs] I look at...it’s not a
huge list of things that can go horribly wrong from a secu-
rity standpoint when you make an iPhone app...So, I just go
through my list of APIs and make sure they’re using them
properly.” If REs are unable to relate their current context
to prior experience, then they fall back on basic strategies
(N=16) such as looking at the largest functions first. P03V
said, “If I have no clue what to start looking at...I literally
go to the function list and say the larger function is proba-
bly interesting...as long as I can distinguish the actual code
versus library code, this technique is actually pretty useful.”
Similarly, REs employ heuristics to decide which functions
not to investigate. For example, P16M said, “If the function is
cross-referenced 100 times, then I will avoid it. It’s probably

something like an error check the compiler added in.”
In sub-component scanning, experience plays an even more

important role. As in the previous analysis phase, REs must
decide which data- (N=8) and control-flow paths (N=7) to
consider. Again, this is done first by prior experience (N=6)
and then by simple strategies (N=4). As they perform their
analyses, REs must also determine potential hypotheses re-
garding program functionality (N=16) and possible vulnera-
bilities (N=9)—exploitable flaws in the case of vulnerability
discovery, or signaturable behaviors for malware analysis. In
most cases, these determinations are made by recognizing
similarities with previous experiences (N=15). For example,
when P08V saw a function named httpd_ipc_init, he rec-
ognized this might introduce a vulnerability, saying, “IPC
generally stands for inter-process communication, and many
router firmwares like this set up multiple processes that com-
municate with each other. If it’s doing IPC through message
passing, then that opens up the attack surface to anything that
can send messages to this httpd binary.” If the RE is unable to
generate hypotheses based on prior experience, they instead
make determinations based on observed behaviors (N=16),
obtained via more labor intensive investigation of the program
execution or in-depth code review.

Experience used to select analysis method throughout
(RQ1). There were typically multiple ways to answer a ques-
tion. The most common example, as discussed in Section 5.3,
was deciding between executing the program or reading line-
by-line during focused experimentation (N=9). Similar deci-
sions occurred in the other phases. For example, some REs
choose to simply skip the overview phase all together and
start with the main function (N=5) whenever, as P03V said,
“it’s clear where the actual behavior starts that matters.”

REs also decide the granularity of analysis, weighing an
approximation’s benefits against the inaccuracy introduced
(N=5). For example, several participants discussed choosing
to use a decompiler to make the code easier to read, knowing
that the decompilation process introduces inaccuracies in
certain circumstances. P04V said, “I actually spend most of
my time in Hex-Rays [decompiler]. A few of my friends
generally argue that this is a mistake because Hex-Rays can
be wrong, and disassembly can’t be. And this is generally
true, but Hex-Rays is only wrong in specific ways.” Further,
because these are explicit decisions, REs are also able to
recognize situations where the inaccuracies are common and
can switch analysis granularities to verify results (N=5). For
example, when using a decompiler, the RE has some intuition
regarding what code should look like. P04V explained, “I’ve
had many situations where I think this looks like an infinite
loop, but it can’t be. It’s because Hex-Rays is buggy. Basically,
in programming, no one does anything all that odd.”

Preferred tools presented output in relation to the code.
In almost all cases, the tools REs choose to use provide a sim-
ple method to connect results back to specific lines of code

11

(N=16). They choose to list strings and API calls in a disas-
sembler (N=15), such as IDA, which shows references in the
code with a few clicks, as opposed to using the command-line
strings command (N=0). Similarly, those participants who
discussed using advanced automated analyses, i.e., fuzzing
(N=1) and symbolic execution (N=1), reported using them
through disassembler plugins which overlaid analysis results
on the code (e.g., code coverage highlighting for fuzzing).
P03V used Z3 for symbolic execution independently of the
code, supplying it with a list of possible states and manually
interpreting its output with respect to the program. However,
she explained this decision was made because she did not
know a tool that presented results in the context of the code
that could be used with the binary she was reversing. She said,
“The best tool for this is PAGAI. . . If you have source it can
give you ranges of variables at certain parts in a program, like
on function loops and stuff.” Specifically, PAGAI lets REs
annotate source code to define variables of interest and then
presents results in context of these annotations [77].

Focused on improving readability. Throughout, REs pay
special attention to improving code readability by modifying
it to include semantic information discovered during their
investigation. In most cases, the main purpose of tools REs
used was to improve code readability (N=9). Many REs used
decompilers to convert the assembly code to a more read-
able high-level language (N=9), or tools like IDA’s lumina
server [78] to label well-known functions (N=2). Addition-
ally, most REs performed several manual steps specifically to
improve readability, such as renaming variables (N=14), tak-
ing notes (N=14), and reconstructing data structures (N=8).
P01M explained the benefit of this approach when looking at
a file reading function by saying, “It just says call DWORD
40F880, and I have no idea what that means. . . so, I’ll just
rename this to read file. . . [now I know] it’s calling read file
and not some random function that I have no idea what it
is.” Taking notes was also useful when several manipulations
were performed on a variable. For example, to understand a
series of complex variable manipulations, P05V said “I would
type this out. A lot of times I could just imagine this in my
head. I think usually I can hold in my head two operations...If
it’s anything greater than that I’ll probably write it down.”

Online resources queried to understand complex under-
lying systems. Regarding external resources, REs most of-
ten reference system and API documentation (N=10). They
reference this documentation to determine specific details
about assembly opcodes or API arguments and functional-
ity. They also reference online articles (N=4) that provide in-
depth breakdowns of complicated, but poorly documented sys-
tem functions (e.g., memory management, networking, etc.).
When those options fail, some REs also reference question-
answering sites like StackOverflow (N=4) because “some-
times with esoteric opcodes or functions, you have to hope
that someone’s asked the question on StackOverflow because

there’s not really any good documentation” (P3). Many par-
ticipants also google specific constants or strings they assume
are unique to an algorithm (N=7). P10 explained, “For ex-
ample, MD5 contains an initialization vector with a constant.
You just google the constant and that tells you the algorithm.”

7 Discussion

Our key finding is the identification and description of a three-
phase RE process model, along with cross-phase trends in
REs’ behaviors. This both confirms and expands on prior
work, which described an RE model of increasingly refined
hypotheses [46]. We demonstrate a process of hypothesis
generation and refinement through each phase, but also show
the types of questions asked and hypotheses generated at each
step and the actions taken and decisions made as the RE
expands their program knowledge.

Our model highlights components of RE for tool design-
ers to focus on and provides a language for description and
comparison of RE tools. Building on this analysis model, we
propose five guidelines for RE tool design. For each guide-
line, we discuss the tools closest to meeting the guideline
(if any), how well it meets the guideline, and challenges in
adopting the guideline in future tool development. Table 2
provides a summary, example application, and challenges for
each guideline. While these guidelines are drawn directly
from our findings, further work is needed to validate their
effectiveness.

G1. Match interaction with analysis phases. The most ob-
vious conclusion is that RE tools should be designed to mesh
with the three analysis phases identified in Section 5. This
means REs should first be provided with a program overview
for familiarization and to provide feedback on where to focus
effort (overview). As they explore sub-components, specific
slices of the program (beacons and data/control-flow paths)
should be highlighted (sub-component scanning). Finally, con-
crete, detailed analysis information should be produced on
demand, allowing REs to refine their program understanding
(focused experimentation).

While this guideline is straightforward, it is also significant,
as it establishes an overarching view of the RE process for
tool developers. Because current RE tool development is ad-
hoc, tools generally perform a single part of the process and
leave the RE to stitch together the results of several tools. G1
provides valuable insights to single-purpose tool developers
by identifying how they should expect their tools to be used
and the input and output formats they should support. Addi-
tionally, with the growing effort to produce human-assisted
vulnerability discovery systems [4], G1 shows when and how
human experts should be queried to support automation.

The closest current tools to fulfilling G1 are popular re-
verse engineering platforms such as IDAPro [19], BinaryN-
inja [20], and Radare [79], which provide disassembly and

12

Reverse Engineering Tool Design Guidelines Example Application
G1 Match interaction with analysis phases

Reverse engineering tools should be designed to facilitate each anal-
ysis phase: overview, sub-component scanning, and focused experi-
mentation.

IDAPro [19], BinaryNinja [20], Radare2 [79]
Provide platforms for REs to combine analyses, but previously lacked
thorough RE process model to guide analysis development and inte-
gration.

G2 Present input and output in the context of code
Integrate analysis interaction into the disassembler or decompiled
code view to support tool adoption

Lighthouse [80]
highlights output in the context of code, but does not support input in
code context.

G3 Allow data transfer between static and dynamic contexts
Static and dynamic analyses should be tightly coupled so that users
can switch between them during exploration.

None we are aware of
We do not know of any complex analysis examples. This is possibly
due to challenges with visualization and incremental analysis.

G4 Allow selection of analysis methods
When multiple options for analysis methods or levels of approximation
are available, ask the user to decide which to use.

Hex-rays decompiler [87]
Applies the minimum application of G4, gives users a binary option of
a potentially imprecise decompiled view or a raw disassembly view.

G5 Support readability improvements
Infer semantic information from the code where possible and allow
users to change variable names, add notes, and correct decompilation
to improve readability.

DREAM++ decompiler [5]
Provides significantly improved decompiled code readability through
several heuristics, but is limited to a preconfigured set of readability
transformations.

Table 2: Summary of guidelines for RE tool interaction design.

debugger functionality and support user-developed analysis
scripts. These tools allow REs to combine different analy-
ses (N=16). However, due to these tools’ open-ended nature
and the lack of a prior RE process model, there are no clear
guidelines for script developers, and users often have to per-
form significant work to find the right tool for their needs and
incorporate it into their process.

G2. Present input and output in the context of code. We
found that most REs only used tools whose interactions were
tightly coupled with the code. This suggests that tool de-
velopers should place a high priority on allowing users to
interact directly with (disassembled or decompiled) code. The
best example of this we observed was given by P05V in the
code-coverage visualization plugin Lighthouse, which takes
execution traces and highlights covered basic blocks in a dis-
assembler view [80]. It also provides a “Boolean query where
you can say only show me covered blocks that were covered
by this trace and not that trace, or only show blocks covered in
a function whose name matches a regular expression.” How-
ever, Lighthouse does not fully follow our recommendation,
as there is no way to provide input in the context of the code.
For example, the user might want to determine all the inputs
reaching an instruction to compare their contents. However,
this is not currently possible in the tool.

G3. Allow data transfer between static and dynamic con-
texts. We found that almost all participants switched between
static and dynamic program representations at least once
(N=14). This demonstrates tools’ need to consider both static
and dynamic information, associate relevant components be-
tween static and dynamic contexts, and allow REs to seam-
lessly switch between contexts. For example, P04V suggested
a dynamic taint analysis tool that allows the user to select
sinks in the disassembler view, run the program and track
tainted instructions, then highlight tainted instructions again
in the disassembler view. This tool follows our suggested
guideline, as it provides results from a specific execution

trace, but also allows the user to contextualize the results in a
static setting.

We did observe one participant using a tool which dis-
played the current instruction in the disassembly view when
stepping through the code in a debugger, and there have been
several analyses developed which incorporate static and dy-
namic data [18,81–85]. However, we are unaware of any more
complex analyses that support user interaction with both static
and dynamic states. Following G3 requires overcoming two
difficult challenges. First, the analysis author must determine
how to best represent dynamic information in a static setting
and vice versa. This requires careful design of the visualiza-
tion to ensure the user is provided relevant information in an
interpretable manner. Second, we speculate that incremental
program analyses (such as those of Szabo et al. [86]) may be
necessary in this setting to achieve acceptable performance
compared to current batch-oriented tools.

G4. Allow selection of analysis methods. Throughout the
RE process, REs choose which methods to use based on prior
experiences and specific needs, weighing the method’s benefit
against any accuracy loss (N=5). These tradeoff decisions are
inherent in most analyses. Therefore, we recommend tool
designers leverage REs’ ability to consider costs and also
recognize instances where the analysis fails. This can be done
by allowing REs to select the specific methods used and tune
analyses to fit their needs. One example we observed was the
HexRays decompiler [87], which allows users to toggle be-
tween a potentially imprecise, but easier to read, decompiled
program view and the more complex disassembled view. This
binary choice, though, is the minimum implementation of G4,
especially when considering more complex analyses where
the analysis developer must make several nuanced choices
involving analyses such as context, heap, and field sensitiv-
ity [88]. This challenge becomes even more difficult if the user
is allowed to mix analysis precision throughout the program,
as static analysis tools generally use uniform analysis sen-

13

sitivity. However, recent progress indicates that such hybrid
analyses are beginning to receive attention [89, 90].

G5. Support readability improvements. We found most
REs valued program readability improvements. Therefore,
RE tool designers should allow the user to add notes or change
naming to encode semantic information into any outputs. Fur-
ther, because annotation is such a common behavior (N=14),
tools should learn from these annotations and propagate them
to other similar outputs. The best example of a tool seeking to
follow this recommendation is the DREAM++ compiler by
Yakdan et al. [5]. DREAM++ uses a set of heuristics derived
from feedback from REs to provide semantically meaning-
ful names to decompiled variables, resulting in significant
readability improvements. One improvement ot this approach
might be to expand beyond DREAM++’s preconfigured set
of readability transformations by observing and learning from
developer input through renaming and annotations. This se-
mantic learning problem poses a significant challenge for
implementation of G5, as it likely requires the analysis to
consider minor nuances of the program context.

RE tool designers should consider the exploratory visual
analysis (EVA) literature. In addition to the guidelines
drawn directly from our results, we believe RE tool designers
can draw inspiration from EVA. EVA considers situations
where analysts search large datasets visually to summarize
their main characteristics. Based on a review of the EVA litera-
ture, Battle and Heer define a process similar to the one we ob-
served REs to perform, beginning with a high-level overview,
generating hypotheses, and then iteratively refining these hy-
potheses through a mix of scanning and detailed analysis [91].
Further, Shneiderman divided EVA into three phases, simi-
lar to those we suggest, with his Visual Information Seek-
ing Mantra: “Overview first, zoom and filter, then details-on-
demand” [92]. While techniques from this field likely cannot
be applied as-is due to differences in the underlying data’s
nature, these similarities suggest insights from EVA could be
leveraged to guide similar development in RE tools, including
methods for data exploration [93–96], interaction [97–100],
and predicting future analysis questions [101–104].

8 Conclusion

Our goal is to carefully model REs’ processes, in order to
support better design of RE tools. To do this, we conducted
a semi-structured observational interview study of 16 profes-
sional REs. We found that RE involves three distinct phases:
overview, sub-component scanning, and focused experimen-
tation. Reverse engineers work through a program using a
variety of manual and automated approaches in each of these
phases, often using a combination of methods to accomplish
a specific task (e.g., a static analysis alongside a debugger).
In the first two phases (overview and sub-component scan-
ning), REs typically use static techniques (e.g., looking at a

control-flow graph), but switch to using dynamic techniques
(e.g., debugging or dynamic analysis) in the last phase (fo-
cused experimentation). Based on our results, we proposed
five design guidelines for RE tools. We believe our model
will help in the design and development of RE tools that more
closely match the RE process.

Acknowledgments

We thank Kelsey Fulton and the anonymous reviewers for
their helpful feedback; BinaryNinja, the two bug-bounty plat-
form companies, and the many CTF teams that supported our
recruitment efforts; and Jordan Wiens for providing valuable
insights into the world of reverse engineering. This research
was supported in part by a UMIACS contract under the part-
nership between the University of Maryland and DoD, and by
a Google Research Award.

References
[1] D. Votipka, R. Stevens, E. M. Redmiles, J. Hu, and M. L. Mazurek,

“Hackers vs. testers: A comparison of software vulnerability discovery
processes,” in IEEE S&P ’18, May 2018, pp. 374–391.

[2] M. Ceccato, P. Tonella, C. Basile, B. Coppens, B. De Sutter,
P. Falcarin, and M. Torchiano, “How professional hackers understand
protected code while performing attack tasks,” in ICPC ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 154–164. [Online].
Available: https://doi.org/10.1109/ICPC.2017.2

[3] E. Eilam, Reversing: secrets of reverse engineering. John Wiley &
Sons, 2011.

[4] D. Fraze, “Computer and Humans Exploring Software Security
(CHESS),” DARPA, 2017, (Accessed 05-31-2019). [Online].
Available: https://www.darpa.mil/program/computers-and-humans-
exploring-software-security

[5] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping
johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study,” in 2016 IEEE Symposium on Security
and Privacy (SP), May 2016, pp. 158–177.

[6] Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang,
C. Kruegel, and G. Vigna, “Rise of the hacrs: Augmenting autonomous
cyber reasoning systems with human assistance,” in CCS ’17. ACM,
2017.

[7] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug
finding tools for java,” in ISSRE ’04. IEEE Computer Society, 2004,
pp. 245–256.

[8] D. Baca, B. Carlsson, K. Petersen, and L. Lundberg, “Improving soft-
ware security with static automated code analysis in an industry set-
ting.” Software: Practice and Experience, vol. 43, no. 3, pp. 259–279,
2013.

[9] A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest: An
analysis of black-box web vulnerability scanners,” in DIMVA ’10.
Springer-Verlag, 2010, pp. 111–131.

[10] A. Austin and L. Williams, “One technique is not enough: A com-
parison of vulnerability discovery techniques,” in ESEM ’11. IEEE
Computer Society, 2011, pp. 97–106.

[11] N. Antunes and M. Vieira, “Comparing the effectiveness of penetra-
tion testing and static code analysis on the detection of sql injection
vulnerabilities in web services,” in PRDC ’09. IEEE Computer
Society, 2009, pp. 301–306.

14

https://doi.org/10.1109/ICPC.2017.2
https://www.darpa.mil/program/computers-and-humans-exploring-software-security
https://www.darpa.mil/program/computers-and-humans-exploring-software-security

[12] L. Suto, “Analyzing the effectiveness and cov-
erage of web application security scanners,” Be-
yondTrust, Inc, Tech. Rep., 2007. [Online]. Available:
https://www.beyondtrust.com/resources/white-paper/analyzing-the-
effectiveness-and-coverage-of-web-application-security-scanners/

[13] ——, “Analyzing the accuracy and time costs of web
application security scanners,” BeyondTrust, Inc, Tech. Rep.,
2010. [Online]. Available: https://www.beyondtrust.com/wp-
content/uploads/Analyzing-the-Accuracy-and-Time-Costs-of-Web-
Application-Security-Scanners.pdf

[14] G. McGraw and J. Steven, “Software [in]security: Comparing apples,
oranges, and aardvarks (or, all static analysis tools are not created
equal,” Cigital, 2011, (Accessed 02-26-2017). [Online]. Available:
http://www.informit.com/articles/article.aspx?p=1680863

[15] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,” in
Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 393–407. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924971

[16] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-
grams.” in OSDI, vol. 8, 2008, pp. 209–224.

[17] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in Proceedings of the 33rd IEEE Symposium
on Security and Privacy, ser. SP ’12. IEEE Computer Society, 2012,
pp. 380–394.

[18] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in Network and Dis-
tributed System Security Symposium, ser. NDSS ’16, no. 2016. In-
ternet Society, 2016, pp. 1–16.

[19] Hex-Rays, “Ida: About,” 2019, (Accessed 05-30-2019). [Online].
Available: https://www.hex-rays.com/products/ida/

[20] Vector35, “Binary.ninja: A reverse engineering platform,” 2019,
(Accessed 05-30-2019). [Online]. Available: https://binary.ninja/

[21] Synopsys, “Coverity scan - static analysis,” 2019, (Accessed
05-30-2019). [Online]. Available: https://scan.coverity.com/

[22] ForAllSecure, “Forallsecure,” 2019, (Accessed 05-30-2019). [Online].
Available: https://forallsecure.com/

[23] Hex-Rays, “Plug-in contest 2018: Hall of fame,” 2019, (Accessed 05-
30-2019). [Online]. Available: https://www.hex-rays.com/contests/
2018/index.shtml

[24] Vector35, “Vector35/community-plugins,” 2019, (Accessed 05-30-
2019). [Online]. Available: https://github.com/Vector35/community-
plugins/tree/master/plugins

[25] B. Shneiderman and C. Plaisant, Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction, 4th ed. Pearson,
2016.

[26] S. Letovsky, “Cognitive processes in program comprehension,” in
Papers Presented at the First Workshop on Empirical Studies of
Programmers on Empirical Studies of Programmers. Norwood, NJ,
USA: Ablex Publishing Corp., 1986, pp. 58–79. [Online]. Available:
http://dl.acm.org/citation.cfm?id=21842.28886

[27] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers,
“Program comprehension as fact finding,” in ESEC/FSE ’07. New
York, NY, USA: ACM, 2007, pp. 361–370. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287675

[28] V. Arunachalam and W. Sasso, “Cognitive processes in program
comprehension: An empirical analysis in the context of software
reengineering,” Journal on System Software, vol. 34, no. 3, pp. 177–
189, Sep. 1996. [Online]. Available: http://dx.doi.org/10.1016/0164-
1212(95)00074-7

[29] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do
professional developers comprehend software?” in ICSE ’12.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 255–265. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337254

[30] L. Gugerty and G. Olson, “Debugging by skilled and novice
programmers,” in Proceedings of the 4th SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’86. New
York, NY, USA: ACM, 1986, pp. 171–174. [Online]. Available:
http://doi.acm.org/10.1145/22627.22367

[31] R. Brooks, “Towards a theory of the comprehension of computer
programs,” International Journal of Man-Machine Studies, vol. 18,
no. 6, pp. 543 – 554, 1983. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0020737383800315

[32] A. Von Mayrhauser and A. Vans, “Industrial experience with an inte-
grated code comprehension model,” Software Engineering Journal,
vol. 10, no. 5, pp. 171–182, 1995.

[33] F. Detienne, “Chapter 3.1 - expert programming knowledge: A
schema-based approach,” in Psychology of Programming, J.-M.
Hoc, T. Green, R. Samurçay, and D. Gilmore, Eds. London:
Academic Press, 1990, pp. 205 – 222. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/B9780123507723500185

[34] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An
exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks,” IEEE Transactions
on Software Engineering, vol. 32, no. 12, pp. 971–987, Dec. 2006.
[Online]. Available: http://dx.doi.org/10.1109/TSE.2006.116

[35] N. Pennington, “Stimulus structures and mental representations in
expert comprehension of computer programs,” Cognitive Psychology,
vol. 19, no. 3, pp. 295 – 341, 1987. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0010028587900077

[36] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental
models and software maintenance,” in Papers Presented at
the First Workshop on Empirical Studies of Programmers
on Empirical Studies of Programmers. Norwood, NJ, USA:
Ablex Publishing Corp., 1986, pp. 80–98. [Online]. Available:
http://dl.acm.org/citation.cfm?id=21842.28887

[37] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design
recovery: a taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17, Jan
1990.

[38] P. OKane, S. Sezer, and K. McLaughlin, “Obfuscation: The hidden
malware,” IEEE Security Privacy, vol. 9, no. 5, pp. 41–47, Sep. 2011.

[39] M. Ligh, S. Adair, B. Hartstein, and M. Richard, Malware analyst’s
cookbook and DVD: tools and techniques for fighting malicious code.
John Wiley & Sons, 2010.

[40] A. Harper, S. Harris, J. Ness, C. Eagle, G. Lenkey, and T. Williams,
Gray hat hacking: the ethical hacker’s handbook, 3rd ed. McGraw-
Hill Education, 2018.

[41] G. A. Klein, “Recognition-primed decisions,” Advances in man-
machine systems research, vol. 5, pp. 47–92, 1989.

[42] G. A. Klein, R. Calderwood, and A. Clinton-Cirocco, “Rapid decision
making on the fire ground,” in Human Factors Society (HFES) ’86,
vol. 30, no. 6. Sage Publications Sage CA: Los Angeles, CA, 1986,
pp. 576–580.

[43] J. A. Cannon-Bowers and E. E. Salas, Making decisions under stress:
Implications for individual and team training. American psycholog-
ical association, 1998.

[44] G. A. Klein, R. Calderwood, and D. Macgregor, “Critical decision
method for eliciting knowledge,” ICSMCCCS ’89, vol. 19, no. 3, pp.
462–472, 1989.

[45] G. A. Klein, Sources of power: How people make decisions. MIT
press, 2017.

15

https://www.beyondtrust.com/resources/white-paper/analyzing-the-effectiveness-and-coverage-of-web-application-security-scanners/
https://www.beyondtrust.com/resources/white-paper/analyzing-the-effectiveness-and-coverage-of-web-application-security-scanners/
https://www.beyondtrust.com/wp-content/uploads/Analyzing-the-Accuracy-and-Time-Costs-of-Web-Application-Security-Scanners.pdf
https://www.beyondtrust.com/wp-content/uploads/Analyzing-the-Accuracy-and-Time-Costs-of-Web-Application-Security-Scanners.pdf
https://www.beyondtrust.com/wp-content/uploads/Analyzing-the-Accuracy-and-Time-Costs-of-Web-Application-Security-Scanners.pdf
http://www.informit.com/articles/article.aspx?p=1680863
http://dl.acm.org/citation.cfm?id=1924943.1924971
https://www.hex-rays.com/products/ida/
https://binary.ninja/
https://scan.coverity.com/
https://forallsecure.com/
https://www.hex-rays.com/contests/2018/index.shtml
https://www.hex-rays.com/contests/2018/index.shtml
https://github.com/Vector35/community-plugins/tree/master/plugins
https://github.com/Vector35/community-plugins/tree/master/plugins
http://dl.acm.org/citation.cfm?id=21842.28886
http://doi.acm.org/10.1145/1287624.1287675
http://dx.doi.org/10.1016/0164-1212(95)00074-7
http://dx.doi.org/10.1016/0164-1212(95)00074-7
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://doi.acm.org/10.1145/22627.22367
http://www.sciencedirect.com/science/article/pii/S0020737383800315
http://www.sciencedirect.com/science/article/pii/S0020737383800315
http://www.sciencedirect.com/science/article/pii/B9780123507723500185
http://www.sciencedirect.com/science/article/pii/B9780123507723500185
http://dx.doi.org/10.1109/TSE.2006.116
http://www.sciencedirect.com/science/article/pii/0010028587900077
http://www.sciencedirect.com/science/article/pii/0010028587900077
http://dl.acm.org/citation.cfm?id=21842.28887

[46] A. Bryant, “Understanding how reverse engineers make sense of pro-
grams from assembly language representations,” Ph.D. dissertation,
US Air Force Institute of Technology, 01 2012.

[47] K. G. Ross, G. A. Klein, P. Thunholm, J. F. Schmitt, and H. C. Baxter,
“The recognition-primed decision model,” Army Combined Arms
Center Military Review, Tech. Rep., 2004.

[48] C. E. Zsambok and G. Klein, Naturalistic decision making. Psychol-
ogy Press, 2014.

[49] G. A. Klein and C. P. Brezovic, “Design engineers and the design
process: Decision strategies and human factors literature,” HFS ’86,
vol. 30, no. 8, pp. 771–775, 1986.

[50] G. Klein, D. Klinger, and T. Miller, “Using decision requirements to
guide the design process,” in ICSMCCCS ’97, vol. 1, Oct 1997, pp.
238–244 vol.1.

[51] J. Rasmussen, “Skills, rules, and knowledge; signals, signs, and sym-
bols, and other distinctions in human performance models,” ICSMC-
CCS ’83, vol. SMC-13, no. 3, pp. 257–266, May 1983.

[52] T. Yamaguchi, H. Nitta, J. Miyamichi, and T. Takagi, “Distributed
sensory intelligence architecture for human centered its,” in IECON

’00, vol. 1, Oct 2000, pp. 509–514 vol.1.

[53] H. Ohno, “Analysis and modeling of human driving behaviors using
adaptive cruise control,” in IECON ’00, vol. 4, Oct 2000, pp. 2803–
2808 vol.4.

[54] M. A. J. Arne Worm, “Information-centered human-machine systems
analysis for tactical command and control systems modeling and
development,” in ICSMCCCS ’00, vol. 3, Oct 2000, pp. 2240–2246
vol.3.

[55] S. Akbari and M. B. Menhaj, “A new framework of a decision support
system for air to air combat tasks,” in ICSMCCCS ’00, vol. 3, Oct
2000, pp. 2019–2022 vol.3.

[56] T. E. Miller, S. P. Wolf, M. L. Thordsen, and G. Klein, “A decision-
centered approach to storyboarding anti-air warfare interfaces,” Fair-
born, OH: Klein Associates Inc. Prepared under contract, no. 66001,
1992.

[57] K. Ohtsuka, “"scheduling tracing", a technique of knowledge elicita-
tion for production scheduling,” in ICSMCCCS ’97, vol. 2, Oct 1997,
pp. 1033–1038 vol.2.

[58] D. W. Klinger, R. Stottler, and S. R. LeClair, “Manufacturing ap-
plication of case-based reasoning,” in NAECON ’92, May 1992, pp.
855–859 vol.3.

[59] A. Von Mayrhauser and S. Lang, “Program comprehension and en-
hancement of software,” in In Proceedings IFIP World Computing
Congress-Information Technology and Knowledge Engineering, 1998.

[60] T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in ICSE ’10. New York, NY, USA: ACM, 2010, pp. 185–194.
[Online]. Available: http://doi.acm.org/10.1145/1806799.1806829

[61] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in ICSE

’13. IEEE Press, 2013, pp. 672–681.

[62] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford,
“Questions developers ask while diagnosing potential security vulnera-
bilities with static analysis,” in ESEC/FSE ’15. New York, NY, USA:
ACM, 2015, pp. 248–259.

[63] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “CrySL: An Ex-
tensible Approach to Validating the Correct Usage of Cryptographic
APIs,” in ECOOP ’18, ser. Leibniz International Proceedings in Infor-
matics (LIPIcs), T. Millstein, Ed., vol. 109, Dagstuhl, Germany, 2018,
pp. 10:1–10:27.

[64] K. Charmaz, Constructing Grounded Theory: A Practical Guide
Through Qualitative Analysis. SagePublication Ltd, London, 2006.

[65] J. Annett, “Hierarchical task analysis,” Handbook of cognitive task
design, vol. 2, pp. 17–35, 2003.

[66] A. Strauss and J. Corbin, Basics of qualitative research: Techniques
and procedures for developing grounded theory. Newbury Park, CA:
Sage, 1998, vol. 15.

[67] A. F. Hayes and K. Krippendorff, “Answering the call for a standard
reliability measure for coding data,” Communication methods and
measures, vol. 1, no. 1, pp. 77–89, 2007.

[68] D. G. Freelon, “Recal: Intercoder reliability calculation as a web
service,” International Journal of Internet Science, vol. 5, no. 1, pp.
20–33, 2010.

[69] M. Lombard, J. Snyder-Duch, and C. C. Bracken, “Content analysis
in mass communication: Assessment and reporting of intercoder relia-
bility,” Human communication research, vol. 28, no. 4, pp. 587–604,
2002.

[70] C. Dietrich, K. Krombholz, K. Borgolte, and T. Fiebig, “Investigating
system operators’ perspective on security misconfigurations,” in CCS

’18. ACM, 2018.

[71] G. Guest, A. Bunce, and L. Johnson, “How many interviews are
enough? an experiment with data saturation and variability,” Field
methods, vol. 18, no. 1, pp. 59–82, 2006.

[72] Hackerone, “2019 bug bounty hacker report,” Hackerone, Tech. Rep.,
March 2019. [Online]. Available: https://www.hackerone.com/sites/
default/files/2019-03/the-2019-hacker-report_0.pdf

[73] A. Zeller, Why programs fail: a guide to systematic debugging. El-
sevier, 2009.

[74] M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective de-
velopers investigate source code: an exploratory study,” IEEE Trans-
actions on Software Engineering, vol. 30, no. 12, pp. 889–903, Dec
2004.

[75] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do
professional developers comprehend software?” in ICSE ’12.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 255–265. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337254

[76] Y. Shoshitaishvili, R. Wang, A. Dutcher, L. Dresel, E. Gustafson,
N. Redini, P. Grosen, C. Unger, C. Salls, N. Stephens, C. Hauser,
J. Grosen, C. Kruegel, and G. Vigna, “Lighthouse | code coverage
explorer for ida pro & binary ninja,” 2019, (Accessed 08-21-2019).
[Online]. Available: http://angr.io

[77] J. Henry, D. Monniaux, and M. Moy, “Pagai: A path sensitive
static analyser,” Electron. Notes Theor. Comput. Sci., vol. 289, pp.
15–25, Dec. 2012. [Online]. Available: http://dx.doi.org/10.1016/j.
entcs.2012.11.003

[78] Hex-Rays, “Ida: Lumina server,” Hex-Rays, 2017, (Accessed 01-06-
2019). [Online]. Available: https://www.hex-rays.com/products/ida/

lumina/index.shtml

[79] Radare, “Radare,” 2019, (Accessed 11-11-2019). [Online]. Available:
https://rada.re/n/radare2.html

[80] M. Gaasedelen, “Lighthouse | code coverage explorer for ida pro
& binary ninja,” 2018, (Accessed 08-21-2019). [Online]. Available:
https://github.com/gaasedelen/lighthouse

[81] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for overflows: A guided fuzzer to find buffer boundary violations,” in
USENIX Security Symposium, ser. USENIX Security ’13. Washing-
ton, D.C.: USENIX, 2013, pp. 49–64.

[82] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,”
in IEEE Symposium on Security and Privacy, ser. S&P ’10, May 2010,
pp. 497–512.

[83] W. Drewry and T. Ormandy, “Flayer: Exposing application internals,”
in USENIX Workshop on Offensive Technologies, ser. WOOT ’07,
2007.

16

http://doi.acm.org/10.1145/1806799.1806829
https://www.hackerone.com/sites/default/files/2019-03/the-2019-hacker-report_0.pdf
https://www.hackerone.com/sites/default/files/2019-03/the-2019-hacker-report_0.pdf
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://angr.io
http://dx.doi.org/10.1016/j.entcs.2012.11.003
http://dx.doi.org/10.1016/j.entcs.2012.11.003
https://www.hex-rays.com/products/ida/lumina/index.shtml
https://www.hex-rays.com/products/ida/lumina/index.shtml
https://rada.re/n/radare2.html
https://github.com/gaasedelen/lighthouse

[84] M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator for
the dynamic analysis of android malware.” in Network and Distributed
System Security Symposium, ser. NDSS ’16. Internet Society, 2016,
pp. 21–24.

[85] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: An automatic system for revealing ui-based trigger conditions
in android applications,” in ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices, ser. SPSM ’12. New York, NY,
USA: ACM, 2012, pp. 93–104.

[86] T. Szabó, S. Erdweg, and M. Voelter, “Inca: A dsl for the
definition of incremental program analyses,” in ASE ’16. New
York, NY, USA: ACM, 2016, pp. 320–331. [Online]. Available:
http://doi.acm.org/10.1145/2970276.2970298

[87] Hex-Rays, “Hex-rays decompiler: Overview,” Hex-Rays, 2019,
(Accessed 11-11-2019). [Online]. Available: https://www.hex-
rays.com/products/decompiler/

[88] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your
contexts well: Understanding object-sensitivity,” in Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’11. New
York, NY, USA: ACM, 2011, pp. 17–30. [Online]. Available:
http://doi.acm.org/10.1145/1926385.1926390

[89] G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for
points-to analysis,” SIGPLAN Not., vol. 48, no. 6, pp. 423–434,
Jun. 2013. [Online]. Available: http://doi.acm.org/10.1145/2499370.
2462191

[90] T. Gilray, M. D. Adams, and M. Might, “Allocation characterizes
polyvariance: A unified methodology for polyvariant control-flow
analysis,” SIGPLAN Not., vol. 51, no. 9, pp. 407–420, Sep. 2016.
[Online]. Available: http://doi.acm.org/10.1145/3022670.2951936

[91] L. Battle and J. Heer, “Characterizing exploratory visual analysis:
A literature review and evaluation of analytic provenance in
tableau,” Computer Graphics Forum (proceedings EuroVis), 2019.
[Online]. Available: http://idl.cs.washington.edu/papers/exploratory-
visual-analysis

[92] B. Shneiderman, “The eyes have it: a task by data type taxonomy for
information visualizations,” in IEEE Symposium on Visual Languages,
Sep. 1996, pp. 336–343.

[93] J. Heer and B. Shneiderman, “Interactive dynamics for visual
analysis,” Commun. ACM, vol. 55, no. 4, pp. 45–54, Apr. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2133806.2133821

[94] A. Perer and B. Shneiderman, “Systematic yet flexible discovery:
Guiding domain experts through exploratory data analysis,” in IUI

’08. New York, NY, USA: ACM, 2008, pp. 109–118. [Online].
Available: http://doi.acm.org/10.1145/1378773.1378788

[95] A. Kalinin, U. Cetintemel, and S. Zdonik, “Interactive data
exploration using semantic windows,” in SIGMOD ’14. New
York, NY, USA: ACM, 2014, pp. 505–516. [Online]. Available:
http://doi.acm.org/10.1145/2588555.2593666

[96] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. Parameswaran,
“Effortless data exploration with zenvisage: An expressive and
interactive visual analytics system,” Proceedings VLDB Endow.,
vol. 10, no. 4, pp. 457–468, Nov. 2016. [Online]. Available:
https://doi.org/10.14778/3025111.3025126

[97] J. S. Yi, Y. a. Kang, and J. Stasko, “Toward a deeper understanding
of the role of interaction in information visualization,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 13, no. 6, pp.
1224–1231, Nov 2007.

[98] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala, “Graphical histories
for visualization: Supporting analysis, communication, and evaluation,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14,
no. 6, pp. 1189–1196, Nov 2008.

[99] T. j. Jankun-Kelly, K. Ma, and M. Gertz, “A model and framework for
visualization exploration,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 2, pp. 357–369, March 2007.

[100] W. A. Pike, J. Stasko, R. Chang, and T. A. O’Connell, “The science
of interaction,” Information Visualization, vol. 8, no. 4, pp. 263–274,
2009.

[101] L. Battle, R. Chang, and M. Stonebraker, “Dynamic prefetching
of data tiles for interactive visualization,” in SIGMOD ’16. New
York, NY, USA: ACM, 2016, pp. 1363–1375. [Online]. Available:
http://doi.acm.org/10.1145/2882903.2882919

[102] D. Gotz and Z. Wen, “Behavior-driven visualization recommendation,”
in IUI ’09. New York, NY, USA: ACM, 2009, pp. 315–324.
[Online]. Available: http://doi.acm.org/10.1145/1502650.1502695

[103] K. Dimitriadou, O. Papaemmanouil, and Y. Diao, “Explore-by-
example: An automatic query steering framework for interactive
data exploration,” in SIGMOD ’14. New York, NY, USA: ACM,
2014, pp. 517–528. [Online]. Available: http://doi.acm.org/10.1145/

2588555.2610523

[104] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis,
“Seedb: Efficient data-driven visualization recommendations to
support visual analytics,” Proceedings VLDB Endow., vol. 8,
no. 13, pp. 2182–2193, Sep. 2015. [Online]. Available: https:
//doi.org/10.14778/2831360.2831371

A Interview protocol

A.1 App Background
To begin our discussion, I want you to think of a program that
you recently reverse engineered.

1. What was the name of the program? [If they’re not com-
fortable telling the name, there are a few additional cues
below]

(a) What type of functionality did the app provide?
[Exs: Banking, Messaging, Social Media, Produc-
tivity]

(b) Approximately, how many lines of code or number
of classes did the app have?

2. Why were you investigating this program?

3. Approximately, how long did you spend reverse engi-
neering this app?

4. What tools did you use for your reverse engineering
process? [Exs: IDAPro, debugger, fuzzer]

5. Did you reverse engineer this app with other people?

(a) (If yes) how did you divide up the work?

A.2 Reverse Engineering Process
Next, we’ll talk about this app in more detail. If possible, I
would like you to open the program you searched the same
way you did when you first started investigating it. If you
would like to share your screen with me, that would be helpful

17

http://doi.acm.org/10.1145/2970276.2970298
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
http://doi.acm.org/10.1145/1926385.1926390
http://doi.acm.org/10.1145/2499370.2462191
http://doi.acm.org/10.1145/2499370.2462191
http://doi.acm.org/10.1145/3022670.2951936
http://idl.cs.washington.edu/papers/exploratory-visual-analysis
http://idl.cs.washington.edu/papers/exploratory-visual-analysis
http://doi.acm.org/10.1145/2133806.2133821
http://doi.acm.org/10.1145/1378773.1378788
http://doi.acm.org/10.1145/2588555.2593666
https://doi.org/10.14778/3025111.3025126
http://doi.acm.org/10.1145/2882903.2882919
http://doi.acm.org/10.1145/1502650.1502695
http://doi.acm.org/10.1145/2588555.2610523
http://doi.acm.org/10.1145/2588555.2610523
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371

for providing context, however, this is not necessary. Primarily,
I want you to open everything on your computer to help you
remember the exact steps you took when you searched the
program.

[If they do share their screen] Also, if you are comfortable,
I would like to record this screen sharing session, so that we
have a later reference.

Please walk me through how you searched the program. As
you go through your process, please explain every step you
took, even if it was not helpful toward your eventual goal. For
example, if you decided to reverse engineer a specific class,
but realized it was not relevant to your search after reading
the code, we would still like to know that you performed this
step. [a few cueing questions are provided below to guide the
conversation]

1. Where did you start?

2. What questions did you ask? How did you answer these
questions?

A.3 Items of Interest

Decision Points. [Every time the participant had to decide
between one or more actions during their process. Ex: Where
to start? What test cases to try? Which path to go down first?
When to inspect a function?]

1. Record the decision that was made

2. How did you make this decisions? Explain your thought
process

Hypotheses. [Every time the participant states a question they
have to answer or makes a conjecture about what they think
the program (or component) does. Ex: X class performs Y
function. X data is transmitted off device, it’s using Y encryp-
tion]

1. Record the hypothesis or question asked

2. Why did you think this could be the case?

3. How did they (in)validate this hypothesis?

Beacons. [Every time the participant states recognizing the
functionality of some code without actually stepping through
it. That is, they are able to notice some pattern in the code
and make some deductions about functionality based on this]

1. Record the beacon that was noticed

2. Why did this stand out to you? How were you able to
recognize it?

3. How did you know that it was X instead of something
else?

Simulation. [Every time the participant discusses looking at
the code to determine how it works]

1. Record how they investigate the code.

(a) (If Automation) Do you use a custom tool or some-
thing open source/purchased?

i. (If not custom) What tool do you use?
A. Does this tool provide the results you

would want or does it fall short in some
way? [Ex: I actually want output X, but I
get Y, so I need to do these steps to get to
X]

(b) Is this generally the approach you use?

i. (If no) Why here and not in other cases?
ii. (If yes) What advantage do you think this ap-

proach has over other manual/automated in-
vestigation?

2. Please describe what’s going on in your head or the
automation?

(a) What are the inputs and outputs?

(b) When do you know when to stop?

Resources. [Every time the participant discusses referencing
some documentation or information source external to the
code]

1. Record what resource they used

2. Do you regularly consult this resource for information?

3. What do you think the benefit of this resource is over
other sources of information? [Exs: Language documen-
tation, Stack Overflow, internal documentation]

B Survey questionnaire

1. Please specify the gender with which you most closely
identify.

(a) Male

(b) Female

(c) Other

(d) Prefer not to answer

2. Please specify your age.

(a) 18-29

(b) 30-39

(c) 40-49

18

(d) 50-59

(e) 60-69

(f) Over 70

3. Please specify your ethnicity. Select all that apply

(a) White

(b) Hispanic or Latino

(c) Black or African American

(d) American Indian or Alaska Native

(e) Asian, Native Hawaiian, or Pacific Islander

(f) Other

4. Please specify the highest degree or level of school you
have completed

(a) Some high school credit, no diploma or equivalent

(b) High school graduate, diploma or the equivalent
(for example: GED)

(c) Some college credit, no degree

(d) Bachelor‘s degree

(e) Master‘s degree

(f) Doctoral degree

5. If you are currently a student or have completed a college
degree, please specify your field(s) of study (e.g. Biology,
Computer Science, etc).

6. Please select the response option that best describes your
current employment status.

(a) Working for payment or profit

(b) Unemployed

(c) Looking after home/family

(d) A student

(e) Retired

(f) Unable to work due to permanent sickness or dis-
ability

(g) Other

(h) Prefer not to answer

7. Please specify the range which most closely matches
your total, pre-tax, personal income specifically from
vulnerability discovery in 2017.

(a) < $999

(b) $1,000 - $4,999

(c) $5,000 - $14,999

(d) $15,000 - $29,999

(e) $30,000-$49,999

(f) $50,000-$74,999

(g) $75,000-$99,999

(h) $100,000-$124,999

(i) $125,000-$149,999

(j) $150,000-$199,999

(k) > $200,000

8. Prefer not to answer

9. On a scale from 1-5, how would you assess your reverse
engineering skill level (1 being a beginner and 5 being
an expert)?

10. How many total years of experience do you have with
reverse engineering?

11. Please select the range that most closely matches the
amount of time you typically spend performing reverse
engineering tasks per week.

(a) <5 hours

(b) 5-10 hours

(c) 10-20 hours

(d) 20-30 hours

(e) 30-40 hours

(f) 40+ hours

12. Please select the range that most closely matches the
amount of time you typically spend performing non-
reverse engineering, technical tasks per week (e.g. soft-
ware or hardware programming, system administration,
network analysis, etc).

(a) <5 hours

(b) 5-10 hours

(c) 10-20 hours

(d) 20-30 hours

(e) 30-40 hours

(f) 40+ hours

13. Please select the range which closely matches the num-
ber of software systems you have reverse engineered?

(a) 0-3

(b) 4-6

(c) 7-10

(d) 11-25

(e) 26-50

(f) 51-100

(g) 101-500

19

(h) 500+

14. Please indicate whether you would be ok with us con-
tacting you regarding future studies even if you are not
selected for this study:

(a) I agree to be contacted regarding future studies

(b) I do not agree to be contacted regarding future
studies

15. Please enter your email address so the we can contact
you for the interview, if you are selected.

16. Your contact information will only be used to invite you
to participate in the study. After the study, all records of
your contact information will be destroyed unless you
indicated above that you agree to be contacted regarding
future stud-ies.

C Codebook

In this appendix, we list the final codebook used to analyze
the content of each interview. Our codebook was divided
into six parts, reflecting our items of interest discussed in
Section 3.1. For each code, we give a short description where
necessary. Some codes were further divided into sub-codes
to provide additional specificity to our analysis. We indicate
this hierarchical relationship by presenting sub-codes in an
indented bulleted list under their parent’s code.

C.1 Hypotheses
For each hypothesis, we coded both the justification or obser-
vation that led to the formulation of a particular hypothesis
(reason) and type of hypothesis the formed (type).

C.1.1 Reason

• Structure - The RE made their inference based on the
structure of the data reviewed. For example, ten digits
separated by three dashes is probably a phone number.

• Observed Behavior - The RE made a determination about
program functionality after a full evaluation of the code
or execution. That is, they did not rely on outside infor-
mation to determine the code functionality.

• Prior Experience - The RE made an inference about
program behavior without fully evaluating the code by
drawing on similar past experiences.

C.1.2 Type

• Vulnerability - The RE hypothesized that a particular
code segment was vulnerability to exploitation.

• Function - The RE hypothesized what the behavior of a
particular code segment was.

• Data Type or Purpose - The RE hypothesized what the
type or purpose of a variable or register was.

C.2 Question

• What is the observable behavior of the program? - The
RE asked what information could be observed when
running the program without using any introspection
tools (e.g., debugger, packet capture, etc.).

• What does the program do for input X? - The RE checks
how the program responds when provided with a specific
input of interest.

• How is variable/register/constant X used? - The RE seeks
to determine how a specific value of interest is used by
the program.

• What security controls are being used? - The RE asks
what mitigations are in place around the program to
prevent exploitation (e.g., ASLR, DEP, etc.)

• What is the output of function/code X? - The RE seeks
to determine the possible output of a function or block
of code of interest.

• What is the possible value of variable/register X at point
Y? - The RE seeks to determine all possible values of a
specific variable or register at a point of interest in the
program.

• What is the concrete value of variable/register X at point
Y? - The RE seeks to determine the value of a variable
or register of interest at a specific point in the program
given a concrete trace of the program’s execution.

• Where are the strings/names related to X? - The RE
seeks to find semantically similar strings and variable or
function names in the program related to a concept of
interest (e.g., encryption).

• What input leads to point X being reached? - The RE
seeks to determine the specific input that will cause a
segment of code of interested to be executed.

• Can code at point X be reached? - The RE seeks to
determine whether it is possible for a segment of code
of interest to be executed.

• How has the program changed over time? - The RE
asks what changes to the program’s code have been
made between the current program version and previous
versions.

20

• What is the control flow path for input X? - The RE seeks
to determine what control flow path through the program
is followed when an input of interest is provided.

• What is the type of variable/register X? - The RE seeks
to determine the type of data (e.g., string, integer, pointer,
etc.) stored in a variable or register of interest.

• What is the possible input to function X? - The RE seeks
to determine all possible inputs to a function of interest.

• What is the output of function X used for? - The RE
seeks to determine how a functions output is used. For
example, is the data transmitted to another device over
the Internet and what is the reason for this transmission?

• What call/uses X (function, string, offset, register)? - The
RE asks what other functions call or use a particular item
of interest.

• What does function/code X do? - The RE seeks to deter-
mine what the overall behavior of a segment of code or
function is.

• What does function X call? - The RE asks what other
functions a function of interest calls.

C.3 Beacon
• String - In the usual sense, meaning the primitive

datatype indicating a series of null terminated characters.

• API calls - In the usual sense, meaning function calls
from external libraries.

• Low Level Operations - Individual assembly code opera-
tions and their parameters (e.g., mov or add).

• Constants - In the usual sense, meaning primitives in the
code that hold a value that does not change.

• Variable Name - The name of a variable, which can
provide hints about the behavior of the program or the
purpose of the variable.

• Operation Sequence -A specific order or sequence of
some operations (e.g., API calls, assembly instructions,
constants, etc.) that the RE that indicate a particular be-
havior to the RE on first glance.

• Comments - Any comments left in the code by the de-
velopers. These may be available if the RE has access to
source code.

• Program Metadata - Meta information about the program
itself such as the number of lines of code.

• Function Prototype - In the usual sense, meaning the type
that the function returns, its name, and its parameters.

• UI element - Any element of in the UI of the program.

• Control Flow - A specific path through the program that
is dictated by some decided sequence of conditional
branches.

• Program Flow - The position of a particular function or
code segment in relation to the broader order of behav-
iors. That is, the RE can make inferences about a func-
tion or code segment’s behavior knowing that it comes
before, after, or in concert with other behaviors.

C.4 Simulation Method

The simulation methods we observed were divided into three
groups: dynamic analysis, static analysis, and metadata re-
view. In addition to coding these methods, we also coded
interactions of their use.

C.4.1 Dynamic Analysis

• Execute with specific input - Executing the program with
input chosen with some specific purpose or idea behind
it.

• Execute in debugger to a certain point - Setting a break-
point in the debugger and executing.

• Manipulate environment - Running the program itself
and altering outside parameters (e.g., network state, files
on disc, etc.) while observing how these affect the pro-
gram.

• Monitor dynamic behavior - Run the program with ad-
ditional tooling (e.g., packet capture, file monitoring) to
see how it interacts with its environment.

• Edit, recompile, and run - When an RE changes the
source code, then runs it to see what happens.

• Fuzzing - Providing a series of varied inputs to the pro-
gram and observing their effect on program behavior.
These inputs can be selected manually or using automa-
tion.

• Compare to known implementation - Running a known
implementation of an algorithm used by the program
(such as an encryption algorithm) and comparing the
known implementation’s results to the program’s results.

C.4.2 Static Analysis

• Read code line-by-line - The RE simply processes the
state of the program in their head by running through the
code line-by-line.

21

• Scan beacons - Scanning through the code quickly and
without much detail in the interest of identifying impor-
tant beacons.

• List function imports/strings - Listing out the functions
imported or the strings used in the program.

• Search for specific string - The RE checks to see if a
specific string is used. This is performed either manually
(i.e., scrolling through and scanning the code) or with
the help of a search tool.

• List file metadata - Listing out the metadata of a specific
file such as its size or type.

• Review differences from prior releases - The RE looks at
how the program has changed from version to version.

• Reconstruct a data structure - The RE writes out a vari-
able’s data structure in psuedo-code by making infer-
ences from the binary.

• Control flow analysis - Analyzing some path through the
code on specific control flow inputs.

• Data flow analysis - Analyzing some path through the
code by data as it is passed between variables and
through memory.

• Symbolic execution - The RE determines the set of sym-
bols and expressions representing possible values of data
at a specific point in the program.

• Function call cross-referencing - The RE determines
where a particular function is called in the code.

• Compare to known implementation - The RE compares
the code they believe is performing a particular algorithm
or function to code from an outside source that is known
to perform that algorithm or function.

• Reimplementation - The RE writes a program to perform
the behaviors they believe the program under investi-
gation is performing. They then compare their imple-
mentation to the program under inspection to determine
whether they are the same or identify differences.

C.4.3 Metadata Review

• check security mitigations - Checking the security re-
strictions or mitigations.

C.4.4 Method Interactions

• View static and dynamic representation together - When
the RE views both static and dynamic code representa-
tions on their screen at the same time. For example, if
they have a disassembler open reading code line-by-line
side-by-side with a debugger.

• Static to Dynamic - When the RE first uses a static
method, then uses information from this to inform the
use of a dynamic method.

• Dynamic to Static - When the RE first uses a dynamic
method, then uses information from this to inform the
use of a static method.

• Combined - When the RE uses dynamic and static meth-
ods in concert, constantly passing information back and
forth between static and dynamic methods.

C.5 Decision
For each decision point, we coded both the reasoning behind
the RE’s decision (reason) and type of decision the RE made
(type).

C.5.1 Reason

• State of investigation - The RE makes a decision based
on where they are within the investigation process. For
example, the RE may choose to list APIs called because
that is always their first step when reverse engineering a
new program.

• Strategy - The decision is dictated by an overarching
RE strategy. For example, the RE may choose to look at
functions in descending order according to their size.

• Function prototype - The RE made a decision based on
a function’s prototype (input and output types, number
of arguments, etc). For example, if a function is passed a
large number of function pointers as arguments, then it
might be starting many threads and would be interesting
to investigate.

• Specific sub-goal - The decision was made because it
was necessary to complete some other task.

• Control flow path - The decision was dictated by the
control flow path that was currently being followed.

• Data flow path - The decision was dictated by the data
flow path that was currently being followed.

• Proximity to interesting information - The decision about
some element was made because it is physically nearby
some interesting information in the code.

• Prior experience - The RE made their decision based on
prior reverse engineering experience.

• Program metadata - The RE made their decision based
only on program metadata.

• Observed behavior - The decision was made based on an
understanding of what the program was actually doing.

22

C.5.2 Type

• Function/code to analyze - Which code segments or
functions to attempt to analyze.

• Analysis inputs - Which inputs to use when performing
a simulation method.

• Order of functions/code to analyze - The order in which
the reverse engineer analyzes portions of code or func-
tions.

• Simulation method to use - Which simulation method to
employ at that particular moment.

23

	Introduction
	Background and Related Work
	Naturalistic Decision-Making
	Program Comprehension
	Improving Usability for RE Tools
	The Vulnerability Discovery Process

	Method
	Interview Protocol
	Data Analysis
	Limitations

	Recruitment and Participants
	Results: An RE Process Model
	Overview (RQ1)
	Sub-component Scanning (RQ1)
	Focused Experimentation (RQ1)

	Results: Cross-phase Trends
	Discussion
	Conclusion
	Interview protocol
	App Background
	Reverse Engineering Process
	Items of Interest

